
C S 4 2 2 S O F T W A R E E N G I N E E R I N G P R I N C I P L E S

WASHINGTON STATE UNIVERSITY

CS 422 Software Engineering Principles Electirical Engineering and Computer Science
Instructor: F.T. Sheldon, Ph.D. Washington State University

G L O S S A R Y

In order to provide an optimum frame of reference for the class, this glossary establishes a set of
consistent technical definitions. Definitions contained here in are based on such references as the
IEEE Standard Dictionary of Electrical and Electronic Terms (e.g., ANSI/IEEE Std 729-1983), and
the Rome Air Development Center (RADC-TR-90-239) Testability/Diagnostic Design Encyclopedia.
Definitions may be considered to have come from these sources unless otherwise indicated.

Adaptive maintenance. Maintenance performed to make a software product usable in a changed
environment.

Analytical model. A representation of a process or phenomenon by a set of solvable equations.
Contrast with simulation.

Anomaly. An operational characteristic (or implementation) which is believed to require corrective
action.

Audit. (1) An independent review for the purpose of assessing compliance with software
requirements, specifications, baselines, standards, procedures, instructions, codes, and contractual and
licensing requirements. See also code audit. (2) An activity to determine through investigation the
adequacy of, and adherence to, established procedures, instructions, specifications, codes, and
standards or other applicable contractual and licensing requirements, and the effectiveness of
implementation.

Certification. (1) A written guarantee that a system or computer program complies with its
specified requirements. (2) A written authorization that states that a computer system is secure
and is permitted to operate in a defined environment with or producing sensitive information. (3)
The formal demonstration of system acceptability to obtain authorization for its operational use.
(4) The process of confirming that a system, software subsystem, or computer program is
capable of satisfying its specified requirements in an operational environment. Certification
usually takes place in the field under actual conditions, and is utilized to evaluate not only the
software itself, but also the specifications to which the software was constructed. Certification
extends the process of verification and validation to an actual or simulated operational
environment. (5) The procedure and action by a duly authorized body of determining, verifying and
attesting in writing to the qualifications of personnel, processes, procedures, or items in accordance
with applicable requirements (ANSI/ASQC A3-1978).

Corrective maintenance. Maintenance performed specifically to overcome existing faults. See
also software maintenance.

Correctness. (1) The extent to which software is free from design defects and from coding defects;
that is, fault free. (2) The extent to which software meets its specified requirements. (3) The extent
to which software meets user expectations.

Criticality. A classification of a software error or fault based upon an evaluation of the degree of
impact of that error or fault on the development or operation of a system (often used to determine
whether or when a fault will be corrected).

Debugging. The process of locating, analyzing, and correcting suspected faults. Compare with
testing.

Defect Density. Defect density is a metric used after design and code inspections to judge the
quality of the translation of requirements into design. It is defined as the cumulative (over time)

CS 422 Software Engineering Principles 2 Electirical Engineering and Computer Science
Instructor: F.T. Sheldon, Ph.D. Washington State University

defects encountered divided by the total number of units in the CSCI and the cumulative (over time)
defects corrected divided by the total number of units per CSCI.

Design analysis. (1) The evaluation of a design to determine correctness with respect to stated
requirements, conformance to design standards, system efficiency, and other criteria. (2) The
evaluation of alternative design approaches. See also preliminary design.

Design analyzer. An automated design tool that accepts information about a program's
design and produces such outputs as module hierarchy diagrams, graphical representations of
control and data structure, and lists of accessed data blocks.

Design. (1) The process of defining the software architecture, components, modules, interfaces,
test approach, and data for a software system to satisfy specified requirements. (2) The result of the
design process.

Diagnosis. The functions performed and the techniques used in determining and isolating the cause
of malfunctions.

Diagnostic accuracy. The degree of correctness with which the diagnostic output agrees with the
true state of the item being diagnosed.

Diagnostic capability. All the diagnostic characteristics associated with the detection, isolation,
and reporting of faults.

Diagnostic element. Any distinct, single part of the diagnostic capability, e.g., automatic and
manual testing, training, maintenance aiding, and technical information.

Diagnostic software. Used to determine operational health of hardware and/or software and report
diagnostic information (e.g., health status) according to the diagnostic requirements.

Diagnostics. Anything relating to or used in making a diagnosis.

Documentation. The documentation indicator identifies potential problems in the deliverable
software documentation. This metric is the combined average of the weighted averages for the
documentation and source listings in terms of a product's modularity, descriptiveness, consistency,
simplicity, expandability, and testability or instrumentation characteristics [AFSCP 87].

Embedded diagnostics. That portion of the diagnostic capability that is an integral part of the
prime item.

Error analysis. (1) The process of investigating an observed software fault with the purpose of
tracing the fault to its source. (2) The process of investigating an observed software fault to
identify such information as the cause of the fault, the phase of the development process during
which the fault was introduced, methods by which the fault could have been prevented or detected
earlier, and the method by which the fault was detected. (3) The process of investigating software
errors, failures, and faults to determine quantitative rates and trends.

Error category. One of a set of classes into which an error, fault , or failure might fall. Categories
may be defined for the cause, criticality, effect, life-cycle phase when introduced or detected, or
other characteristics or the error, fault, or failure.

Error data. A term commonly (but not precisely) used to denote information describing software
problems, faults, failures, and changes, their characteristics, and the conditions under which they are
encountered.

CS 422 Software Engineering Principles 3 Electirical Engineering and Computer Science
Instructor: F.T. Sheldon, Ph.D. Washington State University

Error model. A mathematical model used to predict or estimate the number of remaining faults,
reliability, required test time, or similar characteristics of a software system. See also error
prediction.

Error prediction. A quantitative statement about the expected number or nature of software
problems, faults, or failures in a software system. See also error model.

Error. (1) A discrepancy between a computed , observed, or measured value or condition and the
true, specified, or theoretically correct value or condition (ANSI). (2) Human action that results in
software containing a fault. Examples include omission or misinterpretation of user
requirements in a software specification, incorrect translation or omission of a requirement in
the design specification. This is not a preferred usage. See also failure, fault.

Failure rate. (1) The ratio of the number of failures is given unit of measure; for example,
failures per unit of time, failures per number of transactions, failures per number of computer runs.
(2) In reliability modeling, the ratio of the number of failures of a given category or severity to a
given period of time; for example, failures per second of execution time, failures per month.
Synonymous with failure ratio.

Failure. (1) The termination of the ability of a functional unit to perform its required function.
(2) The inability of a system or system component to perform a required function within specified
limits. A failure may be produced when a fault is encountered. (3) A departure of program
operation from program requirements.

Failure Density/Fault Intensity. Failure Density is a metric used to monitor faults during the
maintenance period after software is released. This metric is a continuation of the fault
density/intensity concept and is a estimate of the number of failures that may be discovered after
release. The focus of this metric is on monitoring product quality from the customer's aspect.

A failure has been classified as "a manifestation of a fault or a departure, during execution, of the
software program from its intended function" [STEP 92]. The inputs for this indicator are obtained
during test activities. "The severity and class of failures as well as the software faults that caused the
failure are documented and used as the basis for this indicator" [AFSCP 87].

Fault density. Fault density is a metric used after testing to judge how well the requirements have
been implemented and to determine if sufficient software testing has been accomplished. It is defined
as the cumulative (over time) faults (causes of the faults, not the faults themselves) divided by the
total number of units in the CSCI and the cumulative (over time) faults corrected divided by the total
number of units per CSCI; where, the average size of a unit is 100 lines of code.

Fault seeding. The process of intentionally adding a known number of faults to those already in a
computer program for the purposes of estimating the number of indigenous faults in the
program. Synonymous with the bug seeding (faults are typically called defects in the software).

Fault tolerance. The built-in capability of a system to provide continued correct execution in
the presence of a limited number of hardware or software faults.

Fault. (1) An accidental condition that causes a functional unit to fail to perform its required
function. (ISO) (2) A manifestation of an error (2) in software Synonymous with bug.

Firmware. (1) Computer programs and data loaded in a class of memory that cannot be
dynamically modified by the computer during processing (i.e., microcode, microprogram). (2)
Hardware that contains a computer program and data that cannot be changed in its user
environment. The computer programs and data contained in firmware are classified as software; the
circuitry containing the computer program and data is classified as hardware.

CS 422 Software Engineering Principles 4 Electirical Engineering and Computer Science
Instructor: F.T. Sheldon, Ph.D. Washington State University

Formal language. A language whose rules are explicitly established prior to its use. Synonymous
with artificial language. Examples include programming languages, such as FORTRAN and
Ada, and mathematical or logical languages, such as predicate calculus. Contrast with natural
language.

Formal method. A mathematically sound approach to the specification and design of computer
software.

Formal specification. (1) A specification written and approved in accordance with established
standards. (2) In proof of correctness, a description in a formal language of the externally
visible behavior of a system or system component.

Formal testing. The process of conducting testing activities and reporting results in accordance
with an approved test plan.

Functional decomposition. A method of designing a system by breaking it down into its
components in such a way that the components correspond directly to system functions and sub-
functions.

Functional specification. A specification that defines the functions that a system or system
components must perform. See also performance specification.

Imperfect debugging. In reliability modeling, the assumption that attempts to correct or
remove a detected fault are not always successful.

Implementation requirement. Any requirement that impacts or constrains the
implementation of a software design; for example, design descriptions, software development
standards, programming language requirements, software quality assurance standards.

Implementation. (1) A realization of an abstraction in more concrete terms; in particular, in
terms of software, or both. (2) A machine executable form of a program, or a form of a program
that can be translated automatically to machine executable form. (3) The process of translating a
design into code and debugging the code.

Independent verification and validation. (1) Verification and validation of a software
product by an organization that is both technically and managerially separate from the organization
responsible for developing the product. (2) Verification and validation of a software product by
individuals or groups other than those who performed the original design, but, who may be from the
same organization. The degree of independence must be a function of the importance of the
software.

Indigenous fault. A fault existing in a computer program that has not been inserted as part of a
fault seeding process.

Inductive assertion method. A proof of correctness technique in which assertions are written
describing program inputs, outputs, and intermediate conditions, a set of theorems is developed
relating satisfaction of the input assertions to satisfaction of the output assertions, and the
theorems are proved to be true.

Inspection. (1) A formal evaluation technique in which software requirements, design, or code
are examined in detail by a person or group other than the author to detect faults, violations of
development standards, and other problems. Contrast with walk-through. (2) A phase of quality
control that by means of examination, observation or measurement determines the conformance of
materials. (3) A phase of quality control that by means of examination, observation or measurement

sft
Highlight

sft
Highlight

CS 422 Software Engineering Principles 5 Electirical Engineering and Computer Science
Instructor: F.T. Sheldon, Ph.D. Washington State University

determines the conformance of materials, supplies, components, parts, appurtenances, systems,
processes or structures to predetermined quality requirements.

Integrated diagnostics. A structured process that maximizes the effectiveness of diagnostics by
integrating pertinent elements, such as testability, automatic and manual testing, training,
maintenance aiding, and technical information, as a means for providing a cost effective capability
to detect and isolate unambiguously all faults known or expected to occur in weapon systems and
equipment in order to satisfy weapon system mission requirements.

Integration testing. An orderly progression of testing in which software elements, hardware or
both are combined and tested until the entire system has been integrated. See also system testing.

Integration. The process of combining software elements, hardware elements, or both into
overall system.

Integrity. The extent to which unauthorized access to or modification of software or data can be
controlled in a computer system. See also security.

Interface requirement. A requirement that specifies a hardware, software, or data base
element with which a system or system component must interface, or that sets forth constraints
on formats, timing, or other factors caused by such an interface.

Interface specification. A specification that sets forth the interface requirements for a
system or system component.

Interface testing. Testing conducted to ensure that program or system components pass
information or control correctly to one another.

Interface. (1) A shared boundary. An interface might be a hardware component to link two
devices or it might be a portion of storage or registers accessed by two or more computer
programs. (ANSI) (2) To interact or communicate with another system component.

Maintainability. (1) The ease with which software can be maintained. (2) The ease with which
maintenance of a maintenance of a functional unit can be performed in accordance with
prescribed requirements (ISO).

Model. A representation of a real world process, device, or concept. See also analytical model,
availability model, debugging model, error model, reliability model, simulation,
statistical test model.

Operation and maintenance phase. The period of time in the software life-cycle during which
a software product is employed in its operational environment, monitored for satisfactory
performance, and modified as necessary to correct problems or to respond to changing
requirements.

Operational reliability. The reliability of a system or software subsystem in its actual use
environment. Operational reliability may differ considerably from reliability in the specified or test
environment.

Output assertion. A logical expression specifying one or more conditions that program outputs
must satisfy in order for the program to be correct.

Performance evaluation. The technical assessment of a system or system component to
determine how effectively operating objectives have been achieved.

CS 422 Software Engineering Principles 6 Electirical Engineering and Computer Science
Instructor: F.T. Sheldon, Ph.D. Washington State University

Performance requirement. A requirement that specifies a performance characteristic that a
system or system component , must possess; for example, speed, accuracy, frequency.

Performance specification. (1) A specification that sets forth the performance
requirements for a system or system component. (2) Synonymous with requirements
specification. (U.S. Navy usage) See also functional specification.

Physical requirement. A requirement that specifies a physical characteristic that a system or
system component must possess; for example material, shape, size, weight.

Process. (1) In a computer system, a unique, finite course of events defined by its purpose or by
its effect, achieved under given conditions. (2) To perform operations on data in process. (ISO)

Product Metrics. Product metrics measure aspects relating to quality, customer satisfaction, and
difficulty to produce, but "may not reveal anything about how the software has evolved into its
current state" [Conte 86]. These indicators include: size - LOC, fault density/intensity,
documentation, test sufficiency, prediction accuracy, and customer satisfaction.

Product specification. Synonymous with design specification. (DoD usage)

Program instructions stored in a read-only storage. An assembly composed of a hardware unit
and a computer program integrated to form a functional entity whose configuration cannot be
altered during normal operation. The computer program is stored in the hardware unit as an
integrated circuit with a fixed logic configuration that will satisfy a specific application or
operational requirement.

Program specification. Any specification for a computer program. See functional
specification, performance specification, requirements specification.

Program synthesis. The use of software tools to aid in the transformation of a program
specification into a program that realizes that specification.

Proof of correctness. (1) A formal technique used to prove mathematically that a program
satisfies its specifications. See also total correctness. (2) A program proof that results from
applying this technique.

Pseudo-code. A combination of programming language and natural language used for
computer program design.

Qualification testing. Formal testing, usually conducted by the developer for the customer, to
demonstrate that the software meets its specified requirements.

Quality metric. A quantitative measure of the degree to which software processes a given
attribute that affects its quality.

Real time. (1) Pertaining to the processing of data by a computer in connection with another
process outside the computer according to time requirements imposed by the outside process. This
term is also used to describe systems operating in conversational mode, and processes that can be
influenced by human intervention while they are in progress. (ISO) (2) Pertaining to the actual time
during which a physical process transpires; for example, the performance of a computation during
the actual time that the related physical process transpires, in order that results of the computation
can be used in guiding the physical process. (ANSI)

Redundancy. The inclusion of duplicate or alternate system elements to improve operational
reliability by ensuring continued operation in the event that a primary element fails.

sft
Highlight

CS 422 Software Engineering Principles 7 Electirical Engineering and Computer Science
Instructor: F.T. Sheldon, Ph.D. Washington State University

Regression testing. Selective re-testing to detect faults introduced during modification of a
system or system component, to verify that modifications have not caused unintended adverse
effects, or to verify that a modified system or system component still meets its specified
requirements.

Reliability assessment. The process of determining the achieved level of reliability of an
existing system or system component.

Reliability data. Information necessary to assess the reliability of software at selected points in
the software life-cycle. Examples include error data and time data for reliability models,
program attributes such as complexity, and programming characteristics such as development
techniques employed and programmer experience.

Reliability growth. The improvement in software reliability that results from correcting faults
in the software.

Reliability model. A model used for predicting, estimating, or assessing reliability. See also
reliability assessment.

Reliability, numerical. The probability that an item will perform a required function under
stated conditions for a stated period of time. (ANSI/ASQC A3-1978)

Reliability. The ability of an item to perform a required function under stated conditions for a
stated period of time. (ANSI/ASQC A3-1978) (2) See software reliability.

Requirement. (1) A condition or capability needed by a user to solve a problem or achieve an
objective. (2) A condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other formally imposed document.
The set of all requirements forms the basis for subsequent development of the system or system
component. See also requirements analysis, requirements phase, requirements
specification.

Requirements analysis. (1) The process of studying user needs to arrive at a definition of system
or software requirements. (2) The verification of system or software requirements.

Requirements phase. The period of time in the software life-cycle during which the
requirements for a software product, such as the functional and performance capabilities, are
defined and documented.

Requirements specification language. A formal language with special constructs and
verification protocols used to specify, verify, and document requirements.

Requirements specification. A specification that sets forth the requirements for a system or
system component; for example, a software configuration item. Typically included are
functional requirements, performance requirements, interface requirements, design
requirements, and development standards.

Reusability. The extent to which a module can be used in multiple applications.

Semantics. (1) The relationships of characters or groups of characters to their meanings,
independent of the manner of their interpretation and use. (ISO) (2) The relationships between
symbols and their meanings. (ANSI)

Simulation. The representation of selected characteristics of the behavior of one physical or
abstract system by another system. In a digital computer system, simulation is done by software;

CS 422 Software Engineering Principles 8 Electirical Engineering and Computer Science
Instructor: F.T. Sheldon, Ph.D. Washington State University

for example, (a) the representation of physical phenomena by means of operations performed by a
computer system, (b) the representation of operations of a computer system by those of another
computer system. (ISO) Contrast with analytical model.

Size - LOC (Lines Of Code). Because there exists a relationship between the number of LOC and
the amount of effort necessary to develop software products, an increase in the total number of LOC
can lead to schedule slips, costs overruns, and staffing problems. The amount of estimated new,
reused, modified and total CSCI LOC are monitored on a monthly basis. A linear relationship
between LOC and cost does not exist since reused or modified code alters the total amount of time or
effort necessary for production.

Software development cycle. (1) The period of time that begins with the decision to develop a
software product and ends when the product is delivered. This cycle typically includes a
requirements phase, design phase, implementation phase, test phase, and sometimes,
installation and checkout phase. Contrast with software life-cycle. (2) The period of time
that begins with the decision to develop a software product and ends when the product is no longer
being enhanced by the developer. (3) Sometimes used as a synonym for software life-cycle.

Software development plan. A project plan for the development of a software product.
synonymous with computer program development plan.

Software development process. The process by which user needs are translated into software
requirements, software requirements are transformed into design, the design is implemented in
code, and code tested, documented, and certified for operational use.

Software diagnostics. Methods, processes, and techniques applied to software for the development
of high assurance programs, fault tolerance, including the support and maintenance of systems.

Software errors. (or document discrepancies) Functional deficiencies where the software operation
or implementation (and/or document) does not meet requirements or standards.

Software life-cycle (definition I). The software life-cycle consists of a set of discrete activities
occurring in a given order during the development and use of software and software systems. The
time periods during which these activities occur are referred to as phase. At the current time a
consensus has not developed as to which phases comprise the software life-cycle.

Software life-cycle (definition II). The period of time that starts when a software product is
conceived and ends when the product is no longer available for use. The software life-cycle typically
includes a requirements phase, design phase, implementation phase, test phase,
installation and checkout phase, operation and maintenance phase, and sometimes,
retirement phase. Contrast with software development cycle.

Software Maintenance. (1) Modification of a software product after delivery to correct
faults. (2) Modification of a software product after delivery to correct faults, to improve
performance or other attributes, or to adapt the product to a changed environment. See also
adaptive maintenance, corrective maintenance, perfective maintenance.

Software product. A software entity designated for delivery to a user.

Software reliability. (1) The probability that software will not cause the failure of a system for
a specified time under specified conditions. The probability is a function of the inputs to and use of
the system as well as a function of the existence of faults in the software. The inputs to the system
determine whether existing faults, if any, are countered. (2) The ability of a program to perform a
required function under stated conditions for a stated period of time.

CS 422 Software Engineering Principles 9 Electirical Engineering and Computer Science
Instructor: F.T. Sheldon, Ph.D. Washington State University

Software. (1) Computer programs, procedures, rules, and possibly associated documentation
and data pertaining to the operation of a computer system. See also application software,
system software. (2) Programs, procedures, rules, and any associated documentation
pertaining to the operation of a computer system. (ISO)

Specification language. A language, often a machine-processable combination of natural and
formal language, used to specify the requirements, design, behavior, or other characteristics of
a system or system component. See also requirements specification language.

Stability. (1) The ability to continue unchanged despite disturbing or disruptive events. (2) The
ability to return to an original state after disturbing or disruptive events.

State diagram. A directed graph in which nodes correspond to internal states of a system, and
edges correspond to transitions; often used for describing a system in terms of state changes.

Static analysis. The process of evaluating a program without executing the program. Similar to
desk checking, code audit, inspection, static analyzer, walk-through. Contrasts with
dynamic analysis.

Statistical test model. A model that relates program faults to the input data set (or sets) which
cause them to be encountered. The model also gives the probability that these faults will cause the
program to fail.

Stepwise refinement. A system development methodology in which data definitions and
processing steps are defined broadly at first and then with increasing detail. Contrasts with
hierarchical decomposition, top-down, bottom-up.

Structured design. A disciplined approach to software design that adheres to a specified set of
rules based on principles such as top-down design, stepwise refinement, and data flow analysis.

Symbolic execution. A verification technique in which program execution is simulated using
symbols rather than actual values for input data, and program outputs are expressed as logical or
mathematical expressions involving these symbols.

Syntax. (1) The relationship among characters or groups of characters, independent of their
meanings or the matter of their interpretation and use. (ISO) (2) The structure of expressions in a
language. (ANSI)

System architecture. The structure and relationship among the components of a system. The
system architecture may also include the system's interface with its operational environment.

System design. (1) The process of defining the hardware and software architectures,
components, modules, interfaces, and data for a system to satisfy specified system
requirements. (2) The result of the system design process.

System reliability. The probability that a system, including all hardware and software
subsystems, will perform a required task or mission for a specified environment. See also
operational reliability, software reliability.

Termination proof. In proof of correctness, the demonstration that a program will terminate
under all specified input conditions.

Test bed. A test environment containing the hardware, instrumentation tools, simulators, and
other support software necessary for testing a system or system component.

CS 422 Software Engineering Principles 10 Electirical Engineering and Computer Science
Instructor: F.T. Sheldon, Ph.D. Washington State University

Test repeatability. An attribute of a test indicating whether the same results are produced each
time the test is conducted.

Test report. A document describing the conduct and results of the testing carried out for a
system or system component.

Test validity. The degree to which a test accomplishes its specified goal.

Testability. (1) The extent to which software facilities both the establishment of test criteria and
the evaluation of the software with the respect to those criteria. (2) The extent to which the
definition of requirements facilitates analysis of the requirements to establish test criteria.

Testing. The process of exercising or evaluating a system or system component by manual or
automated means to verify that it satisfies specified requirements or to identify differences
between expected and actual results. Compares with debugging.

Tolerance. The ability of a system to provide continuity of operation under various abnormal
conditions.

Total correctness. In proof of correctness, a designation indicating that a program's output
assertions follow logically from its input assertions and processing steps, and that, in addition,
the program terminates under all specified input conditions. Contrast with partial correctness
which is a weaker property.

Validation involves checking that the program as implemented meets the expectations of the
software customer in such a way to ensure compliance with software requirements. See also
verification.

Verification. (1) The process of determining whether or not the products of a given phase of the
software development cycle fulfill the requirements established during the previous phase. See
also validation. (2) Formal proof of program correctness. See proof of correctness. (3) The
act of reviewing, inspecting, testing, checking, auditing, or otherwise establishment and documenting
whether or not items, processes, services, or documents conform to specified requirements.
(ANSI/ASQC A3-1978).

Walk-through. A process in which a designer or programmer leads one or more other members of
the development team through a segment of design or code that he or she has written, while the
other members ask questions and make comments about technique, style, possible errors, violation
of development standards, and other problems. Contrast with inspection.

sft
Highlight

sft
Highlight

sft
Highlight

sft
Highlight

